2013年5月9日 星期四

小型核融合發電機將來出現 - 未來影響人類最大發明( Small nuclear fussion reactors invented and change the world )

Physics wunderkind Taylor Wilson astounded the science world when, at age 14, he became the youngest person in history to produce fusion. The University of Nevada-Reno offered a home for his early experiments when Wilson’s worried parents realized he had every intention of building his reactor in the garage.

Wilson now intends to fight nuclear terror in the nation's ports, with a homemade radiation detector priced an order of magnitude lower than most current devices. In 2012, Wilson's dreams received a boost when he became a recipient of the $100,000 Thiel Prize. Wilson now intends revolutionize the way we produce energy, fight cancer, and combat terrorism using nuclear technology.

Well, I have a big announcement to make today, and I'm really excited about this. And this may be a little bit of a surprise to many of you who know my research and what I've done well. I've really tried to solve some big problems: counter-terrorism, nuclear terrorism, and health care and diagnosing and treating cancer, but I started thinking about all these problems, and I realized that the really biggest problem we face, what all these other problems come down to, is energy, is electricity, the flow of electrons. And I decided that I was going to set out to try to solve this problem.

And this probably is not what you're expecting. You're probably expecting me to come up here and talk about fusion, because that's what I've done most of my life. But this is actually a talk about, okay -- (Laughter) — but this is actually a talk about fission. It's about perfecting something old, and bringing something old into the 21st century.

Let's talk a little bit about how nuclear fission works. In a nuclear power plant, you have a big pot of water that's under high pressure, and you have some fuel rods, and these fuel rods are encased in zirconium, and they're little pellets of uranium dioxide fuel, and a fission reaction is controlled and maintained at a proper level, and that reaction heats up water, the water turns to steam, steam turns the turbine, and you produce electricity from it. This is the same way we've been producing electricity, the steam turbine idea, for 100 years, and nuclear was a really big advancement in a way to heat the water, but you still boil water and that turns to steam and turns the turbine.

And I thought, you know, is this the best way to do it? Is fission kind of played out, or is there something left to innovate here? And I realized that I had hit upon something that I think has this huge potential to change the world. And this is what it is.

This is a small modular reactor. So it's not as big as the reactor you see in the diagram here. This is between 50 and 100 megawatts. But that's a ton of power. That's between, say at an average use, that's maybe 25,000 to 100,000 homes could run off that. Now the really interesting thing about these reactors is they're built in a factory. So they're modular reactors that are built essentially on an assembly line, and they're trucked anywhere in the world, you plop them down, and they produce electricity. This region right here is the reactor.

And this is buried below ground, which is really important. For someone who's done a lot of counterterrorism work, I can't extol to you how great having something buried below the ground is for proliferation and security concerns.

And inside this reactor is a molten salt, so anybody who's a fan of thorium, they're going to be really excited about this, because these reactors happen to be really good at breeding and burning the thorium fuel cycle, uranium-233.

But I'm not really concerned about the fuel. You can run these off -- they're really hungry, they really like down-blended weapons pits, so that's highly enriched uranium and weapons-grade plutonium that's been down-blended. It's made into a grade where it's not usable for a nuclear weapon, but they love this stuff. And we have a lot of it sitting around, because this is a big problem. You know, in the Cold War, we built up this huge arsenal of nuclear weapons, and that was great, and we don't need them anymore, and what are we doing with all the waste, essentially? What are we doing with all the pits of those nuclear weapons? Well, we're securing them, and it would be great if we could burn them, eat them up, and this reactor loves this stuff.

So it's a molten salt reactor. It has a core, and it has a heat exchanger from the hot salt, the radioactive salt, to a cold salt which isn't radioactive. It's still thermally hot but it's not radioactive. And then that's a heat exchanger to what makes this design really, really interesting, and that's a heat exchanger to a gas. So going back to what I was saying before about all power being produced -- well, other than photovoltaic -- being produced by this boiling of steam and turning a turbine, that's actually not that efficient, and in fact, in a nuclear power plant like this, it's only roughly 30 to 35 percent efficient. That's how much thermal energy the reactor's putting out to how much electricity it's producing. And the reason the efficiencies are so low is these reactors operate at pretty low temperature. They operate anywhere from, you know, maybe 200 to 300 degrees Celsius. And these reactors run at 600 to 700 degrees Celsius, which means the higher the temperature you go to, thermodynamics tells you that you will have higher efficiencies. And this reactor doesn't use water. It uses gas, so supercritical CO2 or helium, and that goes into a turbine, and this is called the Brayton cycle. This is the thermodynamic cycle that produces electricity, and this makes this almost 50 percent efficient, between 45 and 50 percent efficiency. And I'm really excited about this, because it's a very compact core. Molten salt reactors are very compact by nature, but what's also great is you get a lot more electricity out for how much uranium you're fissioning, not to mention the fact that these burn up. Their burn-up is much higher. So for a given amount of fuel you put in the reactor, a lot more of it's being used.

And the problem with a traditional nuclear power plant like this is, you've got these rods that are clad in zirconium, and inside them are uranium dioxide fuel pellets. Well, uranium dioxide's a ceramic, and ceramic doesn't like releasing what's inside of it. So you have what's called the xenon pit, and so some of these fission products love neutrons. They love the neutrons that are going on and helping this reaction take place. And they eat them up, which means that, combined with the fact that the cladding doesn't last very long, you can only run one of these reactors for roughly, say, 18 months without refueling it. So these reactors run for 30 years without refueling, which is, in my opinion, very, very amazing, because it means it's a sealed system. No refueling means you can seal them up and they're not going to be a proliferation risk, and they're not going to have either nuclear material or radiological material proliferated from their cores.

But let's go back to safety, because everybody after Fukushima had to reassess the safety of nuclear, and one of the things when I set out to design a power reactor was it had to be passively and intrinsically safe, and I'm really excited about this reactor for essentially two reasons. One, it doesn't operate at high pressure. So traditional reactors like a pressurized water reactor or boiling water reactor, they're very, very hot water at very high pressures, and this means, essentially, in the event of an accident, if you had any kind of breach of this stainless steel pressure vessel, the coolant would leave the core. These reactors operate at essentially atmospheric pressure, so there's no inclination for the fission products to leave the reactor in the event of an accident. Also, they operate at high temperatures, and the fuel is molten, so they can't melt down, but in the event that the reactor ever went out of tolerances, or you lost off-site power in the case of something like Fukushima, there's a dump tank. Because your fuel is liquid, and it's combined with your coolant, you could actually just drain the core into what's called a sub-critical setting, basically a tank underneath the reactor that has some neutrons absorbers. And this is really important, because the reaction stops. In this kind of reactor, you can't do that. The fuel, like I said, is ceramic inside zirconium fuel rods, and in the event of an accident in one of these type of reactors, Fukushima and Three Mile Island -- looking back at Three Mile Island, we didn't really see this for a while — but these zirconium claddings on these fuel rods, what happens is, when they see high pressure water, steam, in an oxidizing environment, they'll actually produce hydrogen, and that hydrogen has this explosive capability to release fission products. So the core of this reactor, since it's not under pressure and it doesn't have this chemical reactivity, means that there's no inclination for the fission products to leave this reactor. So even in the event of an accident, yeah, the reactor may be toast, which is, you know, sorry for the power company, but we're not going to contaminate large quantities of land. So I really think that in the, say, 20 years it's going to take us to get fusion and make fusion a reality, this could be the source of energy that provides carbon-free electricity. Carbon-free electricity.

And it's an amazing technology because not only does it combat climate change, but it's an innovation. It's a way to bring power to the developing world, because it's produced in a factory and it's cheap. You can put them anywhere in the world you want to.

And maybe something else. As a kid, I was obsessed with space. Well, I was obsessed with nuclear science too, to a point, but before that I was obsessed with space, and I was really excited about, you know, being an astronaut and designing rockets, which was something that was always exciting to me. But I think I get to come back to this, because imagine having a compact reactor in a rocket that produces 50 to 100 megawatts. That is the rocket designer's dream. That's someone who is designing a habitat on another planet's dream. Not only do you have 50 to 100 megawatts to power whatever you want to provide propulsion to get you there, but you have power once you get there. You know, rocket designers who use solar panels or fuel cells, I mean a few watts or kilowatts -- wow, that's a lot of power. I mean, now we're talking about 100 megawatts. That's a ton of power. That could power a Martian community. That could power a rocket there. And so I hope that maybe I'll have an opportunity to kind of explore my rocketry passion at the same time that I explore my nuclear passion.

And people say, "Oh, well, you've launched this thing, and it's radioactive, into space, and what about accidents?" But we launch plutonium batteries all the time. Everybody was really excited about Curiosity, and that had this big plutonium battery on board that has plutonium-238, which actually has a higher specific activity than the low-enriched uranium fuel of these molten salt reactors, which means that the effects would be negligible, because you launch it cold, and when it gets into space is where you actually activate this reactor.

So I'm really excited. I think that I've designed this reactor here that can be an innovative source of energy, provide power for all kinds of neat scientific applications, and I'm really prepared to do this. I graduated high school in May, and -- (Laughter) (Applause) — I graduated high school in May, and I decided that I was going to start up a company to commercialize these technologies that I've developed, these revolutionary detectors for scanning cargo containers and these systems to produce medical isotopes, but I want to do this, and I've slowly been building up a team of some of the most incredible people I've ever had the chance to work with, and I'm really prepared to make this a reality. And I think, I think, that looking at the technology, this will be cheaper than or the same price as natural gas, and you don't have to refuel it for 30 years, which is an advantage for the developing world.

And I'll just say one more maybe philosophical thing to end with, which is weird for a scientist. But I think there's something really poetic about using nuclear power to propel us to the stars, because the stars are giant fusion reactors. They're giant nuclear cauldrons in the sky. The energy that I'm able to talk to you today, while it was converted to chemical energy in my food, originally came from a nuclear reaction, and so there's something poetic about, in my opinion, perfecting nuclear fission and using it as a future source of innovative energy.

美天才少年 發明超強小型核反應爐

美國以描述4個加州理工學院天才的宅男生活而備受歡迎的情境喜劇《天才理論傳》(The Big Bang Theory)中,曾經描述劇中天才中的天才謝爾頓‧庫珀(Sheldon Cooper)博士,13歲時試圖在自家後院架設一個核反應爐,為全鎮的居民提供免費的電力。結果在網購高純度鈾時被有關部門盯上,特工前來家訪並告訴他私人持有高純度鈾是非法的。

沒想到現實上真有其事!根據法新社28日加州長堤報導,美國18歲的威爾森(Taylor Wilson)設計出1種小型核子反應爐,未來將能燃燒舊核武廢料,替住宅、工廠甚至太空殖民地提供電力。

威爾森4年前設計出可在自家車庫興建的核融合反應爐,因而聲名大噪,他今天在南加州的TED會議上展現最新成果。他設計出1種能夠產生50到100百萬瓦特電力的小型反應爐,足以為多達10萬戶住宅提供電力。

這種反應爐可透過生產線組裝,使用的燃料是熔化的核武放射性原料。這種相對小型的模組化反應爐可以將燃料封存在裡面,可持續使用30年。威爾森說,「這把舊式的核分裂帶到21世紀。我想這有改變世界的龐大潛力。」威爾森表示,反應爐的燃料是熔鹽,且不需要加壓。「發生意外時,反應爐可能會壞掉,這對電力公司是壞消息,但不會有問題。」

威爾森說,「冷戰時我們建造了巨大的核武火藥庫,我們不再需要這些東西。如果我們能把這些東西物盡其用會很棒,這種反應爐愛死這些東西了。」威爾森設計的反應爐使用氣體而非蒸氣驅動渦輪旋轉,可以在低於一般核子反應爐的溫度下運作,就算有裂痕也不會噴出任何東西。

威爾森打算在2年內打造出反應爐原型,5年上市。威爾森樂觀地說:「它不只能對抗氣候變遷,還能為開發中國家帶來電力。」想像一下,1座小型反應爐裝在打算飛往其他星球的移民火箭上。你不只擁有推進火箭的動力,抵達後也有電力可用。」

威爾森在自己架設的「泰勒的核能站」(Taylor’s Nuke Site)上如此自我介紹,「我的名字是泰勒‧威爾森。我是名青少年核能科學家。我對所有與核能、放射性及導體相關領域的研究感到著迷。我研究的興趣包含應用核能物理與核能發展史。」



Enhanced by Zemanta

2013年5月8日 星期三

政府與在野黨請勿持續苛待勞工,只想從勞工抽稅,每年歲出給勞工福利卻是世界級低

馬反對提高勞保投保上限 綠批曲解訴求


總統馬英九8日說,如果提高勞工保險投保上限,可能會發生道德風險,對收入較高的勞工有利,但收入較低的勞工無法獲利。

馬總統上午接受廣播電台專訪,在回答主持人有關勞工投保上限新台幣4萬3900元是否提高的問題時說,4萬3900元是投保金額上限,如果提高的話,可能會發生一些道德風險,就是只要補繳3年的費用,就可以拿到幾十倍一次領的金額。

總統認為,這樣對收入較高的勞工有利,但對收入較低的勞工反而無法獲利,這絕對不是說故意不讓勞工領更多的錢,而是看哪一類的勞工。

有關工商業大老提出希望政府提高勞保提撥率,總統說,政府增加就是全民負擔,但因為這是一個社會保險,一方面由被保險人自己負擔一部分,雇主負擔一部分,政府負擔一部分,用這種方式分擔風險。

總統表示,目前來說,勞保提撥率比率是雇主7成、被保險人2成、政府1成的「721」,到目前為止,政府認為這個比率是比較恰當的;企業界一定是希望減少負擔比率,但像民主進步黨的方案是政府都不要付錢,而政府現在這個方案對勞工和企業界都比較合適,所以721還是比較恰當。2013/5/8

馬反對調高勞保上限 故意曲解勞工訴求

【記者蕭博樹台北報導】馬總統8日接受專訪時表示:「如果提高勞保投保薪資上限,只要補繳3年的費用,就可以拿到幾十倍一次領的金額。」對此,立委李應元表示,他不知道馬總統是狀況外,還是故意曲解此訴求。

李應元說,現行勞工保險條例缺乏調整「投保薪資分級表」之機制,以至於投保薪資上限長期停留在43900元。根據統計,目前約有215萬被保險人適用此一級距,超過全體被保險人的五分之一。這不但與社會各界實際薪資脫節過大,也使得勞工實際的退休所得替代率偏低。

李應元表示,勞保老年給付為勞工退休所得的主要支柱。但根據勞保局的統計,目前平均申請一次退的給付金額為118萬元,申請年金給付的平均給付為1.4萬元。勞工退休保障明顯不足,也遠遜於軍公教。

李應元強調,沒有人主張取消勞保投保薪資上限,大家是希望合理的調高投保薪資上限。本人已經付委的勞保條例修正案就建立自動調整「投保薪資分級表」之機制。當適用最高一級投保金額之被保險人,其人數超過被保險人總人數之百分之十,並持續十二個月時,主管機關應自次月調整投保薪資分級表。但考量對保險財務之衝擊,暫以基本工資之三倍為投保薪資之上限。

另依現行規定,無論投保薪資級距的高低,每一年資的年金給付率皆為1.55%,缺乏所得重分配的效果。故建議平均月投保薪資在基本工資2.5倍以內部分,保險年資合計每滿一年,按其平均月投保薪資之百分之一點五五計算;超過2.5倍部分,保險年資合計每滿一年,按其平均月投保薪資之百分之一點四計算。

分析

  • 整體勞工繳的稅多,來自政府福利支出卻是世界低,根本不合理:2012 勞工繳的綜所稅約 2900億, 而政府支出給勞保及就業補助才 685億, 普通事故保險包含生育、傷病、失能、老年及死亡五種給付應由勞工繳的綜所稅來支出, 不應該由勞工保險來支出。美國將稅收之 15% 支出補助失業勞工,而台灣竟然是由勞保就業補助支出,台灣政府歲出內僅由低於3%之支出用於勞保費補助及勞保基金,整體計算補助失業勞工占稅收低於0.2%,不僅違反憲法還反世界人權。
  • 『勞工保險條例第2條規定』是壓榨勞工挪用勞保基金,造成政府支出給勞工福利過低及勞保基金每年流失數百億主因。而且,這規定未經全體勞工同意。
  • 政府已經二十五年都沒增加勞保費政府負擔比率,二十五年內軍公教加薪超過15次,30年累計幅度更超過 246%,軍公教退休俸也跟著調整 246%,但政府都沒有增加過勞保費負擔過。現在勞保繳給勞保基金也高於公保,國家將勞工及雇主創造之稅收80%都給了軍公教,結果得來是勞工僅存之福利勞保基金要倒閉,然到勞工及雇主直接繳納之上兆稅率不能幫自已勞保基金嗎?勞工當要求政府比照軍公教調高勞保費補助由 10% 變成 10%*246% = 24.6%,也就等同自然調高勞工最高投保薪資而多出勞保費由政府負擔,如果按照這樣比率政府至少累計欠勞工 8兆費用。
  • 過去政府虧欠勞保基金之黑洞,每年才補 200億,政府要超過100年才能補足政府勞保基金虧欠,每年致少要補 600億 ~ 800億。
  • 兩黨已經苛待勞工幾十年,造成勞工大量外移,全世界只有台灣政府如此苛待勞工,勞工大量外移產業外移正是台灣稅收減少主因,台灣政府正在惡性循環,一直增加政府與地方政府人事與退休費用,一方面卻一直拐勞工繳的納稅錢,經濟當然差。

Enhanced by Zemanta

網路將世界各地連結起來,但媒體卻是如此區域性,如何聆聽全球之聲 ( even, internet connect the world into one, how to hear the global voice? )

無庸置疑的,網路將世界各地連結起來,但我們多數人最終只會聽見與自己相仿人群的聲音。 Ethan Zuckerman 作為部落客和技術專家,希望能協助將世界各地的故事分享給眾人。他提出了一些妙計,幫助你開闊你的Twitter天地,以及如何讀懂以陌生語言寫成的新聞。

現在,你們多數已經發現這是一個騙局 而且是非常非常好的一個騙局 "Cala a boca, Galvao"實際上是有著完全不同的意思 在葡萄文中,意謂著「Galvao,閉上你的嘴!」 而且特指這個人, Galvao Bueno  巴西環球電視台 的體育主持人 而就我從我巴西朋友們的了解 這個人就只會講些陳腔爛調 能把比賽的樂趣完全抹煞掉 只會不斷地說著一樣的東西 所以巴西人去看了他們的第一場 對戰北韓的球賽 拉起了這面旗幟,開始了Twitter的活動 然後試著說服其他的人 去Twitter上發"Cala a boca, Galvao." 而且,這個活動非常成功 甚至在Twitter上稱霸了兩個禮拜

現在,這裡有一些 有一些我們可以從中學習的啟示 首先,我覺得值得學習的是 呼籲人們在網路上活躍 是不會錯的 只要活躍意指著僅需要在Twitter上轉發 只要所要求的活躍程度這麼的簡單 就很容易成功 另外一件我們可以學到的 是Twitter上有很多巴西人 有超過五百萬的巴西人在上面 就國家的總人口來算 有百分之十一有上網的巴西人在使用Twitter 這個數字比美國或英國都高得多 僅次於日本 是人口比例第二高的

現在你可能正在使用Twitter或其他的社群網絡 但你可能從未意識到 巴西人在其中佔了一席之地 就像大多數的我們都沒有意識到一樣 因為在社群網站裡 你所互動的這些人 是你選擇要和他們互動的人 如果你和我一樣,是個魁武熱愛科技、美國的白人 偏好和一群一樣熱愛科技的美國白人進行互動 那麼你就不會發現 Twitter其實是個充斥著巴西人的地方 另外也讓很多美國人感到吃驚的是 Twitter也是個充斥著美國黑人的地方 Twitter最近做了一些調查 研究使用者的地域分布情況 調查結果表示,24%的 美國Twitter使用者是黑人 以黑人在美國總人口數的比例來看 這個數字是其比例的兩倍 又一次的,這對多數Twitter使用者來說非常震驚 但其實不該如此的 而不該感到震驚的原因,是因為每一天 你都可以在熱門話題排行榜中 找到排行在前的話題 幾乎都是黑人的對話

這是Fernando Viegas和Martin Wattenberg 所做數據視覺化 兩個優秀的視覺化設計家 針對 一週的Twitter流量所做的研究 發現了很多排行榜中的熱門話題 都是種族區隔類的話題 你應該想不到 像是「石油外洩」就是偏白人的對話內容 而「野炊」 則是偏黑人的對話內容 其中最瘋狂的是 如果你想在Twitter參與不同的討論 只要點一下滑鼠就能做到 你點「野炊」的標籤,然後就會出現一個完全不同的對話系列 包括有很多不同的人參與討論 但一般而言,我們多數人都不會這麼做 我們會用一個個的過濾泡泡(我朋友Eli Pariser取的) 我們只和已認識的人互動 或是有相同話題的朋友的朋友 我們的視野常被侷限住

我對這種現象感到吃驚 因為這不應該是網路 如果回到過去網路剛興起的時代 當像是Nick Negroponte這樣的網路烏托邦者 撰寫像是《數位革命》這樣的大作 預測網路會成為 不可限量的強大力量 來化解文化間的隔閡 讓所有人處在一個共同的平台 Negroponte以一個故事作為書的開頭 講述在一個原子構成的世界中 建立彼此的連接是多麼地困難 他在佛羅里達參加一個關於科技的會議 然後他發現了 放在桌上的Evian礦泉水 接著Negroponte說這實在是太瘋狂了 這根本是舊經濟體系 這種經濟體系是把這些沈重又緩慢的原子 在遙遠的距離下,非常困難地進行運輸 我們正邁向位元時代 所有的東西會變得很快速、沒有重量 可以在任何時間出現在世界的任何地方 像我們所知的,將改變整個世界

現在來看,很多Negroponte的預測都實現了 但在一件事上他完全錯了 實際上在很多情況下 原子其實比位元的移動性更好 當我走進美國的一家商店 要買一瓶水非常容易 這瓶水是在斐濟裝瓶的 以極高的運費運到了美國 相對的,要我去看斐濟拍製的電影 卻非常地難 要我聽斐濟的音樂,也很困難 要看到斐濟的新聞,對我來說就更難了 但這是很奇怪的,因為斐濟其實發生了很多事件 有政府政變、有軍事政府 有對媒體的掃蕩行動 斐濟其實是一個 我們現在應該關注的地方

我覺得是這麼回事 但我們通常只看見 全球化的 大架構 我們看見在這個相互連接的世界中 讓連接成為可能的大架構 這個架構包括像是飛機航線 包括網路電纜 我們用這種方式看地圖 看起來世界好像是平的 因為每個點只要跳個一、兩次 你可以從倫敦搭飛機 當晚的就能到印度 再跳一次,你就到了斐濟的首都蘇瓦 就是這麼的近

但當你再仔細看 究竟這些網絡如何流動的 會發現非常不一樣的情況 從觀察 全球班機的移動路線開始 你會突然發現,世界根本談不上是平的 而是極端集中分布的 世界的有些地方的連接是非常方便的 像倫敦跟紐約之間 基本上就是有一個在空中的巨大通道 但再看這個地圖 你可以看它個兩三分鐘 你會發現從南美洲到非洲 並沒有很多班機 而且你會發現,世界上有些地方 被切斷了連結 當我們將眼光從促使連結發生的大架構 轉移到實際發生的情況 我們會開始發現,世界其實並不是 以我們想像的方式在運作

所以這就是我在過去的近十年 很感興趣的問題 世界其實變得更加全球化 更緊密地連接 更多問題以全球的規模出現 我們的經濟更加全球化 我們的媒體則越來越不全球化 當你看1970年代的美國電視節目 晚間新聞裡,會有35%-40%的內容 會是國際新聞 現在則降到百分之12到15了 而這扭曲了我們的世界觀 這裡有一張Alisa Miller在TED Talk用的投影片 Alisa是國際公共廣播的執行長 她做了一個示意圖,基本上就是 根據美國電視新聞 一個月內所播報的內容 做的變形地圖 然後你可以發現,當根據新聞內容量來調整地圖 美國電視新聞的世界 基本上可以簡略成 這個巨大膨脹的美國 還有一些我們侵略的國家 這基本上就是我們媒體的現狀 這大概就是美國電視新聞的作用 這很可怕,我同意,下結論前 我也做了像是紐約時報這種主流媒體的地圖 然後我發現一樣的結論 在你看紐約時報或其他主流媒體時 大部分能看見的就是非常富有國家的部分 還有我們所侵略的國家

而這些新媒體 並沒有幫忙什麼忙 這是Mark Graham做的地圖 他就在這附近的牛津網際網路研究中心 這是維基百科中文章的地域分類 所得的地圖 然後你會發現,有很大的比重 都是在北美和西歐 現在維基百科 已經可以讓我們上網自行編輯內容 但維基百科的作者國籍 還是有嚴重的偏向 而不是全世界平均分布 在英國,我們可以站起來 你可以在演講結束後,打開你的電腦 你可以讀印度、澳洲或加拿大的新聞 美國的報紙就不用說了 但你應該也不會讀的 如果來看網路媒體的使用習慣 在網路使用率最高的十國裡 有超過95%的新聞閱讀 都是讀取自己國家的網站 這是少數美國比英國略好之處 因為我們的確喜歡讀你們的媒體 而不是我們自己的

而這些現象讓我開始思考 我們現在所處的狀況其實是我所說的 假想的世界主義 我們上網 認為我們有廣闊的全球觀 我們偶爾會看見一個中國的網頁 然後覺得我們的確有最先進的科技 來把我們連接到世界的其他地方 但我們通常上網都是 看波士頓紅襪隊的比分 所以,這是個實際的問題 不只是紅襪隊今年賽績不佳 這是個實際的問題,因為 當我們在TED上討論的時候 世界上實際的問題 需要去解決的有趣問題 是在全球的規模和範圍上 需要有全球性的對話 來找出全球性的解決之道 這是我們必須去解決的問題

因此,好消息來了 六年來,我一直和這些傢伙混在一起 這是個叫做全球之聲的組織 包括了世界各地的部落客 我們的目標是要整頓世界的媒體 從2004年開始 你可能有注意到,我們至今沒有做的太好 我們自己也不這麼覺得 我們真能解決這問題 我思考的越多,越覺得 有幾件我們在過程中學到的事 是為我們要重新接通世界的有趣學習 如果我們想要以網路來看到更廣闊的世界 首先需要去思考的 是世界上的這個部份 從關注度來說的黑點 就此來看,美國太空總署做的夜間世界地圖 這部份因為缺少電力,從字面來說就是黑的 而我以前總認為這些在地圖上的黑點 代表在那個地方,你不會看見媒體的存在 因為他們有基礎的需求需要被滿足

我慢慢開始了解 其實你可以獲取媒體,只是很費工夫 而且你需要很大的鼓勵 黑點之一是馬達加斯加 一個因為夢工廠電影而被熟知的國家 而不是因為它真正的特色-- 可愛的居民 所以在馬達加斯加的 Foko俱樂部裡的人 並沒有想要改變他們國家的形象 他們要做的事非常簡單 就是一個學習英文的俱樂部 並學習使用電腦和網路 但馬達加斯加當時 發生了政治暴動 多數的獨立媒體都關閉了 而透過Foko俱樂部 學習使用部落格的高中生 突然發現他們正面對國際讀者 談論關於示威、暴力 這個國家正在發生的所有事件 因此,一個非常小型的計畫 讓人們坐在電腦前 發表自己的想法、發表獨立的媒體 結果產生了巨大的影響 讓我們更了解了這個國家

現在,這個詭計在於,我推測 在座的大多數人都不說馬達加斯加語 我也推測你們大多數甚至不說中文 想想其實有點悲哀 因為中文是現在網路上最具代表性的語言 好在人們正在試著去解決這個問題 如果你用Google Chrome瀏覽一個中文網站 你會發現在上方有個很可愛的小框 可以自動偵測到這個網頁是中文的 然後只要點一下滑鼠 就能很快的幫你翻譯這個網頁 很遺憾的,這是個機器翻譯 當 Google 非常精通某些語言的同時 它對中文的翻譯卻很糟糕 所以翻譯的結果可能相當滑稽 你真正想要的,也是我真正希望的 是最終可以按下一個按鈕 讓這個頁面進行排序 然後讓一個真正的人來進行翻譯

如果你認為這很荒謬,其實並不是 現在中國有個組織叫譯言 譯言是個擁有15萬義工 的組織 他們天天上網 尋找最有趣的英文內容 他們每天大概翻譯一百篇文章 來源有主要的報紙和網站 他們免費發佈翻譯的作品 這是個名叫張雷所開始的專案 他在拉薩暴動期間住在美國 對於美國媒體的偏差報導 感到難以置信 然後他說「我能做的,就是開始翻譯 讓國與國之間 能開始對彼此有更深的了解」 而我想問各位的是 譯言可以聚集15萬人 一起把英文的網頁翻譯成中文 那麼英文版的譯言在哪裡? 現在中國已有四億的網路用戶 誰來翻譯中文的網頁 我想在他們之中,至少有一個人能分享有趣的故事

註:Social network 讓全世界可以連起來,了解各語言。

Ref: http://globalvoicesonline.org/




Enhanced by Zemanta