new energy effiency will change world wide |
Bono 曾明確地表示 疾病和貧窮的問題存在已久 這是第一次,我們人類掌握了解決這些問題的工具 在世界上大部分的地區也顯示出這樣的趨勢 在1990 年時,東亞及太平洋地區 有五億的人口處於貧窮狀態 如今已經降至二億人以下 世界銀行預期2011 年這些貧窮人口將低於二千萬 也就是降低了 95% 我很喜歡Bono 的說法 他將舊金山嬉皮區 Haight-Ashbury 和加州的矽谷相比 我來自麻州的高科技園區 我要指出我們在 1960 年代也曾經是嬉皮 差別只是我們是在哈佛廣場閒蕩 我們確實有能力去對抗疾病與貧窮 只要我們有決心。這些是我將討論的主題
Kevin Kelly 曾探討科技的加速進展過程 我對這個主題有強烈的興趣 也研究了三十年 我體認到研究的成果必須有所貢獻 然而,每當我要導入新科技時 卻發現世界已經不一樣了 我發現大部份的發明都是失敗的 並非是因為研發部門沒有達成目標 如果你去分析,會看到大部份的商業計畫實際上能達成目標 但前提是計畫要有機會依照原先設定的目標時去執行 但90%甚至更多的計畫都失敗了,原因就是時機錯誤 在需要時總會欠缺一些關鍵性的成功因素
我像個熱切的學生,研究起科技的趨勢 我追蹤在什麼時間點,科技會呈現什麼面貌 並建立起它的數學模型, 把整個科技發展的過程呈現出來 我的團隊有十個人,我們蒐集資料 看一些關鍵的科技如何運在各個領域,然後建立模型 你會聽到人們說,”我們是不可能預測未來的” 如果你問我 三年後Google 的股價會上升還是下跌? 那真的很難預測 WiMax CDMA G3 會成為無線協定嗎?這也很難說 但是,如果你問我 2010年時,一個計算用的MIPS 會值多少錢? 或是在2012年,DNA一基本對的序列的成本是多少? 或是無線傳送百萬位元在2014 年要花費多少? 這些問題就很容易預測了
性能價格比,處理容量與頻寬間 呈現非常平滑的指數曲線關係 我給你們看一個小範例 它顯示出理論上 科技是以指數模式在發展 但多數人卻是用線性的模式在預測未來 他們以為 處理或解決一個難題 只能用現有的工具 和現有的步調 卻忽略到了指數型成長的因素
基因組計畫在 1990 年時是個很受爭議的計畫 雖然擁有最好的博士班學生、 世界上最先進的儀器 卻只完成了計畫的萬分之一 那怎麼可能在15 年內完成這個計畫? 十年過去了 人們的質疑依舊強烈。他們說:計畫已經過了 2/3 但只勉強地完成了 很少部份的基因組序列 然而,這正是指數型成長的特性 一但到達曲線彎曲點,它就一躍而上 計畫的大部份都在是在最後幾年才完成的 幾年才完成的 HIV 愛滋病毒的序列耗費了15 年 但我們在31 天內就完成 SARS 的序列 所以,我們是有能力去克服這些問題的
我給你看一些例子 來證明這樣的現象是很普遍的。根據我們的模型, 實際的典範轉移率 - 採用新觀念的比例 每十年就呈倍數成長 這些都是對數的圖形 在達到相對的程度後,通常會以十倍速或百倍的速度變化 第一個虛擬實境技術-電話 花了半個世紀的時間,才開始普及 但是手機只花了八年就被普遍使用 將不同的通訊科技 放在這個對數圖表上 會發現電視、收音機跟電話的普及過程 都要花上數十年的時間 而新科技,像是電腦,網路跟手機 在十年內就被廣泛接納了 這個圖表很有意思 他說明了演化過程的基本原理 無論是生物演化或是科技演化 都是以加速度進行的 透過交互作用,他們創造能力 再用這個能力來改變下個階段
生物演化的第一步 就是DNA 的演化,實際上是從 RNA開始的 這個歷程歷經數十億年 在這個已形成的資訊處理的架構下 演化持續推展至下一個階段 所以在寒武紀大爆發時,動物的身體結構 在一千萬年之間就建構完成。足足快了兩百倍 接著,演化在這已身體架構上 建構出更高階的認知功能 生物的演化持續地加速進行 這就是演化與生俱來的天性 第一個具備創造科技能力的物種-智人 已經結合了認知的功能 以及可以與四指相對的拇指 順便一提,大猩猩的拇指無法很好的與其他四指相對 我們因為具備很強的握力和細緻的操控力 所以才能對抗環境 同時運用我們的心智來改變世界 並發展科技
指數成長的人類科技 |
總而言之,物種的演化花了數十萬年 然後透過交互影響和演化的作用 和演化的作用 這個能創造科技的物種已經可以帶來新階段的發展了 這個階段就是科技演化的第一步 而這一步僅花了數千年 從石製工具到輪軸,變化持續加速著 我們總是用上一階段的科技 來創造下一階段 印刷科技花了一個世紀才普及 第一台電腦是靠筆和紙設計出來的。而現今電腦變成我們的工具 我們正在持續加速這樣的過程,順便一提
你觀察這個線性圖形,似乎是每件事情都才剛剛發生 於是有些觀察家說” 喔 Kurzweil 只不過是把一些點放在圖表上 然後,剛好變成一條直線而已 所以,我列出十五份重要思想家的名單 名單選自大英百科全書、自然歷史博物館,卡爾沙根的宇宙日曆 這些人並沒有要為我的觀點背書 他們都選自參考文獻中的作者列表 我想他們也會認同重要的關鍵在 生物演化和科技演化 再一次地,這些都形成了直線。你看到一些 較粗的直線,是因為人們對於關鍵點有些疑義 像是農業開始發展的時間點 或是寒武紀到底持續多久 然而,這個趨勢卻是相當顯著的 這個演化的加速過程是根本且深遠的 在資訊科技界,容量、性能價格比和頻寬 每年都加倍成長 這就指數型態的爆炸性成長 以我個人的經驗,當年我在麻省理工時 電腦大約是一個房間的大小 性能也比不上你們現在的手機 摩爾定律的概念和這個指數成長的概念非常相似 但也只是眾多例子中的一個 基本上,它只是科技演化發展的基本特性之一
如果我們將 49 台著名的電腦放到這個對數圖表上 順便一提,這個對數圖表上的線是指數成長的 這是另一個指數型的範例 在1900年,電腦的性能價格比花了三年才提升一倍 中間的兩年,現在我們每年都可以提升一倍 這五個不同的範例都顯示了指數型態的增長 摩爾的定律只說明了這個定律的後半部 也就是說在積體電路的發展中,電晶體的尺寸不斷地縮減 但我們是在經歷過電子機械式的計算機 取代德國密碼機的繼電器型電腦 1950 年代就能預測艾森豪選舉的真空管電腦 用於首次太空飛行的分立電晶體之後 才有了摩爾定律 每當一個範例的發展到了限度 另一個範例就接著進入指數成長期 真空管尺寸被縮小,更小還要再小 到達一個瓶頸後,當真空管不能再更小了,我們就放棄真空管 全新型態的電晶體開始崛起 事實上,每當一種例子到達發展的頂端時 就是新產品的研發的壓力 長期以來,我們一直在預測後摩爾定律時代的降臨 一開始預測是2002 年,現在又說是2012 年 在10 年內 電晶體的寬度就會變得跟幾個原子的寬度一樣 已經沒有辦法再被縮小 這是摩爾定律的結束 但不是運算指數型態成長的結束。因為晶片是平的 而我們處在三度的立體空間,我們可以利用第三度空間 我們將會走入第三度空間 並獲得極大的進展,就像我們過去幾年一樣 我們將完成在三度空間的自組式的分子電路。 在摩爾定律到達極限前,這些科技就會準備好 同樣的事情也曾發生在超級電腦上 英代爾的處理器上 電晶體的平均價格 在1968 年是一美金一個電晶體 在 2002 年時,同樣的價格可以買到一千萬個
這個指數發展的過程 顯得如此平順 以至於被認為這只是實驗桌上做出來的實驗數據 但這分析的資料其實來自發生在世界各地的各種混沌行為 包括國際間互相指責傾銷 公開募股、破產及行銷策略 這些通常被認為是沒有章法的過程 然而這混亂的過程卻形成了 一個相當平順的結果 就像,我們也許無法預測 一個氣體內的分子的行為 預測單一分子是不可能的 然而,我們卻可以用熱電學 非常準確地預測氣體的整體特性 同樣地,我們無法預測單一特定的計畫 然而這整個世界 這些混亂又無法預測的競爭行為 還有這個科技演化的過程卻都是可以預期的 而且,我們得到的這個趨勢也適用於未來 和格特鲁德•斯泰因的玫瑰不同, 電晶體不僅僅只是一個電晶體 當我們讓它變小變便宜之後 電子間移動的距離變小了 它們變的更快,所以在電晶體的速度上就呈現了指數型進展。 電晶體的周期成本 在1.1年內下降到一半 加上其他形式的發明跟處理器設計 電腦產品的性能價格比每年都提升一倍
這是最基本的通貨緊縮 - 50百分比的通貨緊縮 這不僅僅是發生在電腦產業。也發生在DNA序列上 在大腦掃描上 在網際網路上也都有同樣的情形。任何可以被量化的東西 數百種的指標 和資訊相關的指標 無論容量或是採用率 依照項目的相異,它們分別以每隔12,13,15 個月 就加倍的速度成長 至於性能價格比,則是呈現50- 約40-50 的緊縮幅度 經濟學家已經開始擔心這個現象 大蕭條時期我們曾經歷過經濟緊縮 但是那是導因於貨幣供給系統的崩潰 它也摧毀了消費者信心,是截然不同的現象 這次則是因為生產力大增所致 但是經濟學家依舊認為:”我們不可能跟得上這個變化的腳步 當物價有50% 的通貨緊縮 人們就會增加 30%-40% 的消費,人們不可能一直跟得上這個變化” 可是,事實顯示 我們不僅跟上這個變化 在過去50 年,花在資訊科技上的消費 還呈現了28%的複合性成長 我的意思是,10 年前,沒有人會花一萬美金去買ipod 但是當性能價格提升到某種程度 新發明的應用就會很合理而進入市場 這現象非常廣泛 雖然不適用摩爾定律 但是在磁記錄媒體方面,磁點的尺寸也正持續縮減中 相異的工程師與相異的公司,都依循相同的指數模式在進展
DNA gene technology will change our life in future |
我們所處的世代,並不是為了 讓那些與參加這會議的大多數人相似年紀的人,例如我本人 活得更長久而考量。因為我們正在耗盡人類的珍貴資源 這些資源原本是預留給我們的下一代的兒童 和那些珍惜資源的人 超過三十歲 的長壽生命 並不是自然界物競天擇的結果 而是由於我們在生物科技革命中 已經學到如何操縱 並改變這些軟體的技能 舉例來說,我們已經懂得用RNA干擾去抑制基因 新型態的基因治療法令人雀躍, 它們已經能成功地 將遺傳物質置於正確的染色體位置 這是第一次,基因治療 真的在人體試驗中治癒了肺動脈高血壓 這種致命的疾病 所以我們不僅有訂造的嬰兒,還會有訂造的嬰兒潮 目前這個科技也在加速中 1990 年基因複製時鹼基的成本是10 美金 到2000年時只要一分錢 現在則是一分錢的十分之一 基因資料的數量 也顯示出每年增加一倍 的指數型成長 促成基因組計畫的實現
另一個重大的革命就是通訊革命 用通訊的性能價格比、頻寬和容量可以顯示出不同層次的進展 有線和無線通訊的數量都是以指數型式增長 在耗用的電力和其他方面的數據 也都顯示網際網路的發展已經增加一倍 這圖表是以主機的數量為基準
Nanorobot worked inside our body |
有種奈米工程的裝置可以治療第一型糖尿病,大小和血球相近 它已經在老鼠上進行實驗。數萬個這種裝置 被放於血球中 它們控制胰島素以適當的速度釋放 以治療第一型的糖尿病 這是人造紅血球 的其中一種 這類人造的紅血球引發新的議論 雖然生物的構造已錯綜複雜 但並非處在最佳狀態 一旦我們了解這個準則 而生物學的逆向工程也加速進展 比現今功能強數千倍的能力 都可能達成 一個針對 Freitas 博士設計的人造红血球的分析指出 如果以人造紅血球取代人體血液中的紅血球的 10% 你可以在奧運比賽中可以連續衝刺15 分鐘而不用換上一口氣 或是在游泳池底連續坐四小時 當你說"親愛的,我現在在游泳池",可能表示了一種全新的意義 人們可以在奧運會的選拔賽做出什麼樣的表現呢,這將會變的很有趣 可以預見地,這種人工紅血球會被禁止 但是,青少年怪傑將不斷地出現,他們在學校體育館中 就可以創下奧運紀錄 Freitas 博士也設計了人造白血球 以上是預計2020 年左右會發生的劇情 雖然很像遙遠未來的故事,但事實並非如此 已經有四場主要的會議在討論製造這類血球大小的裝置 也進行了許多動物試驗 有一個已經進行人體試驗 所以這種科技是非常可行的
以計算能力的指數型成長來看 現今1000 美元計算機的功能大約介於昆蟲或是老鼠的大腦 以儲存容量來看 大約2020 年左右會接近人類的智慧 但這裡指的是硬體方面的比較 那麼相近於人腦的軟體該從哪裡取得呢? 我們必須先來分析人腦的內部 事實並不太令人意外 目前我們在腦部掃描的空間分辨力和瞬時分辨力每年都提升一倍 有了新一代的掃瞄儀器 第一次我們看到了 個別的神經間的纖維 還即時地看到它們是如何的處理和傳送訊息 是的,我們現在已經可以取得資料了 但是問題是我們能理解這些資料嗎? Doug Hofstadter 曾經懷疑:也許以人類的智慧 是無法去了解人類的智慧的 因為當我們更聰明後,大腦的構造也會變得更複雜 所以,我們永遠追不上大腦的進展 但結果證明,我們已經能了解大腦了
這個方塊圖是個模型 它在模擬人類大腦聽覺皮質上 有很好的表現 在聽覺心理學測驗中,它和人類聽覺的結果非常類似 另外,也有個小腦的模擬圖 小腦涵蓋了人腦半數以上的神經元 它和人類在技能構成的運作非常類似 雖然現在是在發展的初期階段 但在與大腦的相關的資訊量已經呈現指數成長 腦部掃描的分辨力上 也有指數型的改進 在2020 年代以前 人類大腦的逆向工程會有所成果 在腦部的數百個區域中,其中15個 已經有了非常好的模型和模擬
所有這些都會導向 指數型的經濟成長 過去50 年,在勞工產值上已經從每位勞工每小時30 美金 提升到150 美金 電子商務也顯示指數型的成長。現在已經是上兆元的產業 你也許會想問,它不是發生有過繁榮期跟泡沫化嗎? 這其實是資本市場的現象 當時華爾街察覺到這會是個革命性的科技,它確實是 但是六個月後,它沒有讓所有的商業模式都產生革命性變革時 人們想,糟了 然後,泡沫化就發生了
好的。在這種科技裡 融合運用了目前正在發展中的科技 這會成為手機的標準功能 它能將一種語言翻譯成另一種語言
我將以一些遠景做為結尾 2010 年前,電腦即將消失 它們變得非常微小,以致於它們被植入在衣服和環境當中 影像被直接寫在我們的視網膜上 提供沉浸式的虛擬實境 真實感增加。我們也可以和虛擬人物互動
如果前往 2029 年,到那時,這些趨勢已臻成熟 你感念這些科技產生的過程,它們都曾歷經數次大轉折 而且愈變愈快的轉折終究才成功的 性能比、容量和頻寬 是現在的2 到25 倍 這是相當驚人的成就 它比目前的科技強大百萬倍 我們將完成人類大腦的逆向工程 就一般的容量來比 一千美金的計算機將比人腦的功能更加強大 電腦會結合 人類智慧所擁有的細微的全辨識功能 加上機器原本就優於人腦-的項目 例如:處理分析思考 與正確地記憶數十億的論據的方面 機器更可以快速的分享知識 智慧型機器不只像是外星人入侵 還會和我們的科技結合
我提及的這些奈米機器人 將首次被用在醫藥和健康的應用上。 清理環境,提供能源-像是強大的燃料電池 和分佈很廣的分散式的太陽能板,等諸如此類的應用 它們也會走入我們的大腦中 和我們的生物神經元產生交互作用 我們已經證明了可以達成這個目標的關鍵性原理 舉例來說 在與神經系統結合的沉浸式虛擬實境中 奈米機器人會及阻斷我們真實感受到的訊息 取而代之的是假定你在虛擬的環境下所該收到的訊息 所該收到的訊息 大腦收到這樣的訊息,所以它感覺你是真實地存在虛擬世界裡 你可以和他人一同前往虛擬世界,所有這些感官產生的經驗 都可以和他人共享 我稱它為”經驗傳送器”`。情感對應的神經所產生的感官經驗 會被放在網際網路上 只要連上它們,就能體驗另一個人的感覺 但最重要的是 透過這種和科技的直接合併 人類的智慧會急遽地擴展 就某些層面而言,我們已經在進行了 有了科技的協助 人類才能不時地展現出智慧的成就 人類的預期壽命不斷地延長,在 1800 年時是37歲 隨著這類的生化科技與奈米科技革命的發展 預期壽命會在未來幾年 快速的增長
我要傳達的重點是科技的進步 是指數型的,不是線型的 很多人,甚至是科學家,常以線型模型來預期未來的發展 所以,他們才會認為 “要花上數百年 我們才能發展出具備自我複製能力的奈米科技組裝 或是人工智慧” 但如果你看到指數型成長的力量 你會預期這些事將在不久後實現 資訊科技會持續地擴展到 生活的各個層面,從音樂到生產製造 生物、能源以及材料
在 2020 年代 有了資訊科技,再加上便宜的原料 以及奈米科技,我們幾乎能製造出所有的產品 這些有影響力的科技 不僅能帶來美好未來,也可能導致悲慘命運 所以,我們必須有決心,確保它們只能用在正確的方向上.
沒有留言:
張貼留言