顯示具有 新發明 標籤的文章。 顯示所有文章
顯示具有 新發明 標籤的文章。 顯示所有文章

2013年8月24日 星期六

利用地心引力發電 GravityLight - 將照明全世界沒有無穩定電力之 15億人口 ( Use gravity generation GravityLight : enable the light for the world population of 1.5 billion without stable electricity )

Today, over 1.5 billion people - about 21% of the world's population - have no reliable access to mains electricity. In several countries, the grid is failing to keep pace with population growth, which mean the number of people without reliable electricity will continue to grow. These people rely instead on biomass fuels - predominantly kerosene - for light. ( 今天超過1.5億人 - 約
世界人口的21%左右 - 有沒有可靠地電力。在一些國家,電力網無法跟上人口的增長,這意味著人數沒有可靠的電力將繼續增長。)

GravityLight is our solution!  ( GravityLight是我們的電力解決方案!)

GravityLight™ is an innovative device that generates light from gravity. It's an innovative way of generating light and low levels of power from gravity. It takes only 3 seconds to lift the weight that powers GravityLight, creating 25 minutes of light on its descent. ( GravityLight™ 是一個創新的重力產生光的設備。這是一種創新的方式,重力產生低層次的電力。只需3秒鐘舉起的重量,GravityLight其後創造 25分鐘的燈光。)

It can be used over and over again with no running costs. ( 它可用於一遍又一遍,沒有運行成本。)

Sustainability & Climate change: not only does burning kerosene deplete our finite fossil fuel resources, it also has a huge cumulative contribution to CO2 emissions: Used for 4 hours a day, a single kerosene lamp emits over 100kg of carbon dioxide into the atmosphere per year. ( 可持續發展和氣候變化觀點:不僅燒煤油耗盡我們有限的化石燃料資源,它也有一個巨大的累積的二氧化碳排放量:每天4個小時用於一個單一的煤油燈每年超過100公斤的二氧化碳排放到大氣中。)

In November 2012 GravityLight was at risk of being shelved unless funding could be found to support a trial: the tooling, manufacture and distribution of at least 1000 gravity powered lights. The plan was to gift the lights in both Africa and India to use regularly and use their feedback to develop a more efficient second version for eventual high volume production. ( 在2012年11月中,GravityLight 是在,的被擱置的除非有經費支付找到可用於支持一個試用版:的工裝,至少為1000重力供電的燈的製造及分銷的風險。該計劃是在非洲和印度的禮品: 燈,定期使用,並使用他們的反饋意見,以制定一個更有效的第二個版本的最終大批量生產。)

British industrial designer Martin Riddiford has created a pineapple-size lamp powered by a 25-pound weight that falls about six feet in a half-hour. That may not sound like much, but it’s enough to drive a silent motor at thousands of rotations per minute. The GravityLight, which shines slightly brighter than most kerosene lamps, requires a certain amount of elbow grease: Once the weight reaches bottom, it must be manually lifted to repeat the process. ( 英國工業設計師 Martin Riddiford 創造了一個菠蘿大小的燈,搭載了25磅的體重,在一個半小時​​下降大約六英尺。這聽起來好像不多,但是這是不夠的一種無聲的電機驅動數以千計的每分鐘旋轉。該GravityLight,眼前一亮稍微比大多數煤油燈明亮,需要一定量的苦勞:一旦重量達到底部,必須手動取消重複上述過程。)

参考:http://deciwatt.org/


Enhanced by Zemanta

2013年5月22日 星期三

The MIT Media Lab's 示範“第六感”,能改變市場的隨身科技產品 ( New 6 sense smart device )

我一直對這個問題很有興趣 就是我們能不能夠演變出或發展出第六感。 一種能夠讓我們直接 且便捷地取得詮釋資訊 或現存資料 能夠幫助我們於 當下遇到的問題做出正確的決定。 有些人可能會認為 現今的手機不就已經做到這點嗎? 但我覺得並非如此。 當你在TED與別人會面時─ 毫無疑問的,這是每年最佳的社交場所─ 難道你會與別人握手 然後說,“你能等一下嗎 我要用手機連上Google查詢你?” 或是當你到超級市場 站在那個龐大的貨架前 面對著各種不同種類的衛生紙, 你不會拿出手機,打開瀏覽器, 連上一個網站然後試著決定 各種不同的衛生紙中 哪個購買選擇是最環保的?

事實上我們無法迅速 取得所有相關的資訊, 來幫助我們做出最適當的決定 下一步要做什麼,作出什麼行動。 所以呢,我在媒體實驗室的研究小組 正在研發一系列的產品 讓我們能取得這些資訊 利用較簡便的方式, 並且不需要使用者改變他的行為。 我要在這裡展示 我們最新努力的成果, 而目前為止最成功的樣品, 雖然仍在不斷改進中 其實我身上正戴著它 我們利用市面上常見的零件 將它組合完成─ 而且,順道一提,這裝置現在 的成本只有350美元。

我佩戴著一個簡單的網路攝影機, 和隨身攜帶,使用電池電力並配合鏡子的投影系統。 這些裝置連結上我口袋裡的手機 負責執行通訊以及運算功能。 在影片裡我們看到我的學生,帕納‧密絲利 他是設計並完成這個系統 背後的天才。 我們看的到這個系統 讓他走到任何平面前 使用他的手和投影在面前 的資訊進行互動。 這個系統能追蹤這四隻主要的手指。 現在,你可能發現 他手指上套著一般的奇異筆蓋。 但如果你想要比較時髦的版本 你也可以把指甲塗上不同顏色。

攝影機基本上能追蹤這四隻手指 並且辨識出他的任何手勢 舉例而言,他能直接開啟一個長堤的地圖, 放大與縮小等等。 這個系統還能辨識出具象徵性的手勢 例如這個拍照的動作, 它會直接拍下你面前的事物。 當他走回媒體實驗室後, 他可以走到任何一面牆前 將他拍下的照片投影出來, 瀏覽它們並且分類管理, 放大縮小等等, 同樣是使用完全自然的手勢。 兩年前你們有些人可能也坐在這裡 看過了傑夫‧韓所做的示範 或許有些人會覺得,“這不是很像微軟的平面電腦嗎?” 是的,也是以自然的手勢互動, 運用雙手等等。 但它的不同點在於它可以使用在任何平面上, 你可以走到任何平面前, 沒有適合的話自己的手掌也行 再與這些投影出來的資料進行互動 這裝置是可以隨身攜帶的, 也可以是... (掌聲)

所以最重要的不同之處是它完全是流動的。 另一項更重要的不同點是量產後 它的成本不會超過現今的手機 且組裝完成後體積也不會很大─ 看起來會比 我脖子上掛的版本還要時髦的多。 除了能讓你們實現跟 湯姆‧克魯斯在“關鍵報告”中一樣酷的夢想, 真正讓我們對於這個裝置感到非常興奮的是 它可以達到第六感的功能 能夠給你有關於 你面前事物的資訊。 所以我們看到帕納進入超級市場 準備購買一些衛生紙。 當他拿起一樣產品,系統可以辨識出 他手上的產品 利用影像辨識或是標記技術, 亮起綠燈或是橘燈。 他能詢問更進一步的資料。 所以目前這個選擇 在他自己的標準下,是個很好的選擇 有些人可能想買加入最多漂白劑的衛生紙 而不是最環保的選擇。

如果他在書店裡拿起一本書, 他能取得亞馬遜書局的評分。 它會直接投影在書的封面上。 這是朱恩的書,我們的上一位演講者, 順道一提,這書在亞馬遜書局獲得很好的評分。 另外,當帕納翻閱這本書時 還能看到更多關於這本書的資訊─ 讀者評論,他最喜歡的書評給的評語等等。 如果他翻到特定的一頁 他能找到我們專業朋友寫的註解 並給予他和那一頁內容 相關的更多資訊。 閱讀報紙時─ 它永遠不會是過期的。

你可以看到與正在閱讀事件相關的影片註解 你也能看到最新的體育比賽分數等等。 這是一個較有爭議性的情況。

當你在TED與別人互動時, 你或許會看到一團團的標籤 與那個人相關的字 來自他們的部落格或個人網頁。 在這個例子,這位學生對相機有興趣等等。 在你前往機場的路上, 如果你拿起你的登機證,它可以告訴你飛機誤點了, 或是登機門已更改等等。 而且如果你需要知道現在的時間 答案就是在你的手臂上─ (笑聲) (掌聲) 。

所以我們差不多就是進展到這裡 研發這個第六感 能夠直接給予我們關於 週遭事物的重要資訊。 這是我的學生帕納,像我說的,他是這些背後的天才。

他確實應該得到這麼多掌聲 因為我知道他這三個月來其實沒有睡多少。 他的女朋友大概也蠻生氣他的。 但是它現在並非完美,還需要不斷地改進 誰知道呢,或許十年過後 我們會帶著植入腦內的終極第六感來這裡。

註:這是初代的據有投影、影像識別、投影虛擬人機介面之穿帶式智慧型裝置,幾年後這種穿帶式智慧型裝置技術將成熟。



Enhanced by Zemanta

2013年5月9日 星期四

小型核融合發電機將來出現 - 未來影響人類最大發明( Small nuclear fussion reactors invented and change the world )

Physics wunderkind Taylor Wilson astounded the science world when, at age 14, he became the youngest person in history to produce fusion. The University of Nevada-Reno offered a home for his early experiments when Wilson’s worried parents realized he had every intention of building his reactor in the garage.

Wilson now intends to fight nuclear terror in the nation's ports, with a homemade radiation detector priced an order of magnitude lower than most current devices. In 2012, Wilson's dreams received a boost when he became a recipient of the $100,000 Thiel Prize. Wilson now intends revolutionize the way we produce energy, fight cancer, and combat terrorism using nuclear technology.

Well, I have a big announcement to make today, and I'm really excited about this. And this may be a little bit of a surprise to many of you who know my research and what I've done well. I've really tried to solve some big problems: counter-terrorism, nuclear terrorism, and health care and diagnosing and treating cancer, but I started thinking about all these problems, and I realized that the really biggest problem we face, what all these other problems come down to, is energy, is electricity, the flow of electrons. And I decided that I was going to set out to try to solve this problem.

And this probably is not what you're expecting. You're probably expecting me to come up here and talk about fusion, because that's what I've done most of my life. But this is actually a talk about, okay -- (Laughter) — but this is actually a talk about fission. It's about perfecting something old, and bringing something old into the 21st century.

Let's talk a little bit about how nuclear fission works. In a nuclear power plant, you have a big pot of water that's under high pressure, and you have some fuel rods, and these fuel rods are encased in zirconium, and they're little pellets of uranium dioxide fuel, and a fission reaction is controlled and maintained at a proper level, and that reaction heats up water, the water turns to steam, steam turns the turbine, and you produce electricity from it. This is the same way we've been producing electricity, the steam turbine idea, for 100 years, and nuclear was a really big advancement in a way to heat the water, but you still boil water and that turns to steam and turns the turbine.

And I thought, you know, is this the best way to do it? Is fission kind of played out, or is there something left to innovate here? And I realized that I had hit upon something that I think has this huge potential to change the world. And this is what it is.

This is a small modular reactor. So it's not as big as the reactor you see in the diagram here. This is between 50 and 100 megawatts. But that's a ton of power. That's between, say at an average use, that's maybe 25,000 to 100,000 homes could run off that. Now the really interesting thing about these reactors is they're built in a factory. So they're modular reactors that are built essentially on an assembly line, and they're trucked anywhere in the world, you plop them down, and they produce electricity. This region right here is the reactor.

And this is buried below ground, which is really important. For someone who's done a lot of counterterrorism work, I can't extol to you how great having something buried below the ground is for proliferation and security concerns.

And inside this reactor is a molten salt, so anybody who's a fan of thorium, they're going to be really excited about this, because these reactors happen to be really good at breeding and burning the thorium fuel cycle, uranium-233.

But I'm not really concerned about the fuel. You can run these off -- they're really hungry, they really like down-blended weapons pits, so that's highly enriched uranium and weapons-grade plutonium that's been down-blended. It's made into a grade where it's not usable for a nuclear weapon, but they love this stuff. And we have a lot of it sitting around, because this is a big problem. You know, in the Cold War, we built up this huge arsenal of nuclear weapons, and that was great, and we don't need them anymore, and what are we doing with all the waste, essentially? What are we doing with all the pits of those nuclear weapons? Well, we're securing them, and it would be great if we could burn them, eat them up, and this reactor loves this stuff.

So it's a molten salt reactor. It has a core, and it has a heat exchanger from the hot salt, the radioactive salt, to a cold salt which isn't radioactive. It's still thermally hot but it's not radioactive. And then that's a heat exchanger to what makes this design really, really interesting, and that's a heat exchanger to a gas. So going back to what I was saying before about all power being produced -- well, other than photovoltaic -- being produced by this boiling of steam and turning a turbine, that's actually not that efficient, and in fact, in a nuclear power plant like this, it's only roughly 30 to 35 percent efficient. That's how much thermal energy the reactor's putting out to how much electricity it's producing. And the reason the efficiencies are so low is these reactors operate at pretty low temperature. They operate anywhere from, you know, maybe 200 to 300 degrees Celsius. And these reactors run at 600 to 700 degrees Celsius, which means the higher the temperature you go to, thermodynamics tells you that you will have higher efficiencies. And this reactor doesn't use water. It uses gas, so supercritical CO2 or helium, and that goes into a turbine, and this is called the Brayton cycle. This is the thermodynamic cycle that produces electricity, and this makes this almost 50 percent efficient, between 45 and 50 percent efficiency. And I'm really excited about this, because it's a very compact core. Molten salt reactors are very compact by nature, but what's also great is you get a lot more electricity out for how much uranium you're fissioning, not to mention the fact that these burn up. Their burn-up is much higher. So for a given amount of fuel you put in the reactor, a lot more of it's being used.

And the problem with a traditional nuclear power plant like this is, you've got these rods that are clad in zirconium, and inside them are uranium dioxide fuel pellets. Well, uranium dioxide's a ceramic, and ceramic doesn't like releasing what's inside of it. So you have what's called the xenon pit, and so some of these fission products love neutrons. They love the neutrons that are going on and helping this reaction take place. And they eat them up, which means that, combined with the fact that the cladding doesn't last very long, you can only run one of these reactors for roughly, say, 18 months without refueling it. So these reactors run for 30 years without refueling, which is, in my opinion, very, very amazing, because it means it's a sealed system. No refueling means you can seal them up and they're not going to be a proliferation risk, and they're not going to have either nuclear material or radiological material proliferated from their cores.

But let's go back to safety, because everybody after Fukushima had to reassess the safety of nuclear, and one of the things when I set out to design a power reactor was it had to be passively and intrinsically safe, and I'm really excited about this reactor for essentially two reasons. One, it doesn't operate at high pressure. So traditional reactors like a pressurized water reactor or boiling water reactor, they're very, very hot water at very high pressures, and this means, essentially, in the event of an accident, if you had any kind of breach of this stainless steel pressure vessel, the coolant would leave the core. These reactors operate at essentially atmospheric pressure, so there's no inclination for the fission products to leave the reactor in the event of an accident. Also, they operate at high temperatures, and the fuel is molten, so they can't melt down, but in the event that the reactor ever went out of tolerances, or you lost off-site power in the case of something like Fukushima, there's a dump tank. Because your fuel is liquid, and it's combined with your coolant, you could actually just drain the core into what's called a sub-critical setting, basically a tank underneath the reactor that has some neutrons absorbers. And this is really important, because the reaction stops. In this kind of reactor, you can't do that. The fuel, like I said, is ceramic inside zirconium fuel rods, and in the event of an accident in one of these type of reactors, Fukushima and Three Mile Island -- looking back at Three Mile Island, we didn't really see this for a while — but these zirconium claddings on these fuel rods, what happens is, when they see high pressure water, steam, in an oxidizing environment, they'll actually produce hydrogen, and that hydrogen has this explosive capability to release fission products. So the core of this reactor, since it's not under pressure and it doesn't have this chemical reactivity, means that there's no inclination for the fission products to leave this reactor. So even in the event of an accident, yeah, the reactor may be toast, which is, you know, sorry for the power company, but we're not going to contaminate large quantities of land. So I really think that in the, say, 20 years it's going to take us to get fusion and make fusion a reality, this could be the source of energy that provides carbon-free electricity. Carbon-free electricity.

And it's an amazing technology because not only does it combat climate change, but it's an innovation. It's a way to bring power to the developing world, because it's produced in a factory and it's cheap. You can put them anywhere in the world you want to.

And maybe something else. As a kid, I was obsessed with space. Well, I was obsessed with nuclear science too, to a point, but before that I was obsessed with space, and I was really excited about, you know, being an astronaut and designing rockets, which was something that was always exciting to me. But I think I get to come back to this, because imagine having a compact reactor in a rocket that produces 50 to 100 megawatts. That is the rocket designer's dream. That's someone who is designing a habitat on another planet's dream. Not only do you have 50 to 100 megawatts to power whatever you want to provide propulsion to get you there, but you have power once you get there. You know, rocket designers who use solar panels or fuel cells, I mean a few watts or kilowatts -- wow, that's a lot of power. I mean, now we're talking about 100 megawatts. That's a ton of power. That could power a Martian community. That could power a rocket there. And so I hope that maybe I'll have an opportunity to kind of explore my rocketry passion at the same time that I explore my nuclear passion.

And people say, "Oh, well, you've launched this thing, and it's radioactive, into space, and what about accidents?" But we launch plutonium batteries all the time. Everybody was really excited about Curiosity, and that had this big plutonium battery on board that has plutonium-238, which actually has a higher specific activity than the low-enriched uranium fuel of these molten salt reactors, which means that the effects would be negligible, because you launch it cold, and when it gets into space is where you actually activate this reactor.

So I'm really excited. I think that I've designed this reactor here that can be an innovative source of energy, provide power for all kinds of neat scientific applications, and I'm really prepared to do this. I graduated high school in May, and -- (Laughter) (Applause) — I graduated high school in May, and I decided that I was going to start up a company to commercialize these technologies that I've developed, these revolutionary detectors for scanning cargo containers and these systems to produce medical isotopes, but I want to do this, and I've slowly been building up a team of some of the most incredible people I've ever had the chance to work with, and I'm really prepared to make this a reality. And I think, I think, that looking at the technology, this will be cheaper than or the same price as natural gas, and you don't have to refuel it for 30 years, which is an advantage for the developing world.

And I'll just say one more maybe philosophical thing to end with, which is weird for a scientist. But I think there's something really poetic about using nuclear power to propel us to the stars, because the stars are giant fusion reactors. They're giant nuclear cauldrons in the sky. The energy that I'm able to talk to you today, while it was converted to chemical energy in my food, originally came from a nuclear reaction, and so there's something poetic about, in my opinion, perfecting nuclear fission and using it as a future source of innovative energy.

美天才少年 發明超強小型核反應爐

美國以描述4個加州理工學院天才的宅男生活而備受歡迎的情境喜劇《天才理論傳》(The Big Bang Theory)中,曾經描述劇中天才中的天才謝爾頓‧庫珀(Sheldon Cooper)博士,13歲時試圖在自家後院架設一個核反應爐,為全鎮的居民提供免費的電力。結果在網購高純度鈾時被有關部門盯上,特工前來家訪並告訴他私人持有高純度鈾是非法的。

沒想到現實上真有其事!根據法新社28日加州長堤報導,美國18歲的威爾森(Taylor Wilson)設計出1種小型核子反應爐,未來將能燃燒舊核武廢料,替住宅、工廠甚至太空殖民地提供電力。

威爾森4年前設計出可在自家車庫興建的核融合反應爐,因而聲名大噪,他今天在南加州的TED會議上展現最新成果。他設計出1種能夠產生50到100百萬瓦特電力的小型反應爐,足以為多達10萬戶住宅提供電力。

這種反應爐可透過生產線組裝,使用的燃料是熔化的核武放射性原料。這種相對小型的模組化反應爐可以將燃料封存在裡面,可持續使用30年。威爾森說,「這把舊式的核分裂帶到21世紀。我想這有改變世界的龐大潛力。」威爾森表示,反應爐的燃料是熔鹽,且不需要加壓。「發生意外時,反應爐可能會壞掉,這對電力公司是壞消息,但不會有問題。」

威爾森說,「冷戰時我們建造了巨大的核武火藥庫,我們不再需要這些東西。如果我們能把這些東西物盡其用會很棒,這種反應爐愛死這些東西了。」威爾森設計的反應爐使用氣體而非蒸氣驅動渦輪旋轉,可以在低於一般核子反應爐的溫度下運作,就算有裂痕也不會噴出任何東西。

威爾森打算在2年內打造出反應爐原型,5年上市。威爾森樂觀地說:「它不只能對抗氣候變遷,還能為開發中國家帶來電力。」想像一下,1座小型反應爐裝在打算飛往其他星球的移民火箭上。你不只擁有推進火箭的動力,抵達後也有電力可用。」

威爾森在自己架設的「泰勒的核能站」(Taylor’s Nuke Site)上如此自我介紹,「我的名字是泰勒‧威爾森。我是名青少年核能科學家。我對所有與核能、放射性及導體相關領域的研究感到著迷。我研究的興趣包含應用核能物理與核能發展史。」



Enhanced by Zemanta

2013年4月4日 星期四

智慧型材料將影響未來人類智慧型生活( Smart material to future of smart life? )

Smart material in the application of airplan
Smart material application will be everywhere in future such as new conductive ink application to smart phone as antenna or some smart material application as sensor for the cloth and building, so this is the reason that we post the Ted.com " to understand more on smart material ", refer to Open material ;

我在葡萄牙有位朋友 他的祖父將腳踏車和洗衣機改裝成腳踏車 以便載送家人 他這麼做既是因為沒錢買車 也是因為他知道如何改裝 人類曾經知道東西是如何運作的 如何做成的,我們知道如何建造與修理 至少 清楚地知道我們要買什麼 許多DIY的技術 自二十世紀下半葉起開始失傳 但現在,生產社群以及開放模型 正將東西的運作及其原料等知識 逐漸帶回我們的生活中 而我相信我們應該更進一步 去認識組成這些東西的零件

我們大多還知道 紙和紡織品等傳統原料是由什麼製成的 又是如何生產的 但我們現在有了這些令人驚嘆又有未來感的複合材料 像是伸縮自如的塑膠 能導電的漆料 能變換顏色的顏料,和會發光的布等 我給大家看些例子
Smart material in dress application

導電油墨讓我們不需要用傳統印刷電路或電線 用傳統印刷電路或電線 而可以直接油漆電路 以我手上拿著的這個小東西為例 導電油墨可以製成觸控感應器,當它感應我的皮膚時 這盞小燈就會亮起 藝術家早已在用導電油墨 但最近的研究顯示,不久後 我們將能將它用在雷射印表機和筆上面 這塊丙烯酸纖維附滿了 無色的散光粒子 意思就是,普通的丙烯酸纖維 只會在邊緣散光 但這塊纖維在我開燈的時候 整個表面都會發光 這類材質的應用目前已知有二 一是內部設計,一是多點觸控系統 熱變色顏料 則會在特定溫度下變色 所以我現在把這個東西放在熱的盤子上 這個盤子的溫度比室溫稍微高一點 你們馬上就能看到結果了 這項材料主要的應用 是在嬰兒奶瓶上 它能顯示內容物是否涼了可以喝了

以上只是一些我們俗稱為 智慧型材料的例子 再過幾年,這些材料就會成為我們日常生活中 常用物品和科技的基本要素 我們可能還沒辦法擁有科幻小說中會出現的飛天汽車 但我們會有能隨著溫度改變顏色的 牆壁 可以捲起來的鍵盤 一關就能變不透明的窗戶

我本身是社會科學家 所以我到底為什麼要來這裡講智慧型材料呢? 首先,因為我是個製造者 我對東西的運作感到好奇 想知道它們是如何製成的 但同時也是因為我相信我們應該要更了解 建構出我們這個世界的一切 而現今,我們對這些將建構我們未來的 高科技的複合材料不夠瞭解 智慧型材料難以在少量下取得 而目前也幾乎沒有任何有關如何使用這些材料的資料 它們是如何製成的資訊更是少之又少 所以目前,它們幾乎都是 商業機密或是有專利保護 只有大學和公司能夠取得

因此在大約三年多前,我和克絲蒂 著手進行一項我們稱之為材料公開化的計劃 在這個網站中,我們 以及任何想要加入的人 都可以分享實驗成果,發表資料 希望能鼓勵大家隨時分享所長 並收集一些資源,像是其他像我們一樣身為製作者的 研究報告或是使用說明書 我們期望這個網站能發展成為一個 以智慧型材料DIY資訊為主題的 集體創作大型資料庫
hair like sensor

不過為什麼我們應該要關心 智慧型材料的運作方式以及組成呢? 首先,因為我們不能控制自己不了解的東西 而我們不了解卻在使用的東西 常反而控制了我們 我們用的物品,穿的衣服 住的房子,全都會對我們的行為 健康和生活品質有著深遠的影響 所以如果我們身處的世界充滿了智慧型材料 我們就該去認識且了解它們 第二點 創新總是在不起眼的改造中誕生 很多時候,是外行人而非專家 成了發明者或是改進者 越野腳踏車 半導體、個人電腦 飛機等都是如此

最大的困難通常在於材料科學很複雜 且需要昂貴的設備 但也不總是如此 伊利諾大學有兩名科學家便深諳此道理 他們發表的論文是關於如何用較簡單的方法 製作導電油墨 喬登邦克 在讀論文前完全沒有相關化學經驗 他試著跟著論文步驟做實驗 並用現成原料及工具 製作 他用烤箱 甚至根據其他科學家的說明書 自製試管震盪器 喬登後來將自己的成果放上網 裡面包括他做的所有嘗試,以及失敗的案例 這樣其他人就可以效法 喬登創新的地方 是將原本需要在設備精密的 大學實驗室才能完成的實驗 在他在芝加哥家中的車庫 只用便宜的材料和用具就自己完成了 而在他發表這項成果後 其他人就可以接續研究 想出更簡單的方法或是改進步驟

我想分享的另一個例子 是漢娜威爾森的無零件工具 她想要強調 材料的質性 以及創造者的創造力和技術 電子零件在教導我們認識東西的運作上 非常有用 但這卻有侷限性:實驗本身的設計方式 會影響到我們學習的方式 因此漢娜的辦法 是發想出一系列的技術 來創造特殊物品 以使我們能不受限於設計上的侷限 真正去認識材料本身 漢娜眾多令人印象深刻的實驗裡 這是我最喜歡的一樣 [紙喇叭] 我們現在看到的只是一張紙 上面貼了一些銅線,且連到MP3 和磁鐵上 (音樂:快樂愛相隨) 根據麻省理工柯爾賀先生的研究 漢娜用許多不同的材料 銅膠帶,導電布和油墨等 製作出一系列的紙喇叭 而就像喬登以及許多其它的製作者 漢娜將方法公開 讓大家可以複製或轉載

但紙電子只是現在前景最被看好的 材料科學其中一個分支罷了 紙電子讓我們能創造出較便宜且有彈性的電子 漢娜的手工藝成品 加上她的願意分享發現 使得一連串極具美感以及創新的 新發現有了可能

製造者有趣的地方在於 我們本著熱忱與好奇創造 且我們不怕失敗 我們常從獨特的角度解決問題 並在過程中發現 其他的甚至更好的方法 所以越多人在材料上做實驗 越多研究人員願意分享研究 散播知識 我們就有越大的機會創造出 服務眾人的科技

我現在的感覺有點像泰德尼爾森 在一九七零年代早期寫下 「你們現在應該要了解電腦」時的心情 當時,電腦是只有科學家在關心的 大型計算機 根本沒人料的到以後會人人一台 所以也許你們會覺得我現在站在這裡和大家說 「你們現在必須要了解智慧型材料」很奇怪 但謹記 搶先擁有新興科技的知識 是確保我們能對於自己的未來 仍有發言權最好的方式



Enhanced by Zemanta