早安。 今天我想要來談一談 會自動飛行的海灘球。 不是啦,是靈巧的飛行機器人,就像這一個。 我想告訴大家製作這種東西的挑戰性 以及一些很棒的可能性 來運用這種技術。 這些機器人 算是一種無人的飛行器。 不過,如你所見,它們的尺寸都比較大。 它們都有幾千磅重, 一點都不靈巧。 它們甚至並不是自動操作的。 事實上,大部分這些飛行器 是由飛行小組所操作, 可能有好幾個駕駛員 同時在操控著感應器 以及任務協調器。
我們想要開發的機器人是像這個樣子 -- 左邊這裡另外兩張照片-- 這些你都可以買到現成的。 這些是一種具有四個螺旋槳的直昇機, 它們大約是一公尺大小, 也有好幾磅重。 於是我們將它們進行感應器與處理器的改良, 讓這些機器人能夠在室內 不靠GPS飛行。
我手中所拿的這個機器人 就是這種飛行器, 這是由兩位學生所製作的, Alex 以及 Daniel。 它的重量大概是 十分之一磅左右。 它消耗的能量大概是15瓦。 如你所見, 它的直徑大概是8英吋大。 讓我替大家簡單介紹一下 這些機器人的原理。
這裡有四個螺旋槳。 當這四個螺旋槳速度相同時, 機器人就會懸浮在空中。 如果這些螺旋槳速度增加, 機器人就會飛起來,往上加速。 當然,如果機器人傾斜了, 相對於水平線來說, 它就會往這個方向前進。 想讓它傾斜的話,這裡有兩種方法可以辦到。 在這圖片中, 你可以看見4號螺旋槳轉速變快一點, 而2號螺旋槳轉速變慢一點。 當這種情況發生時, 就會讓機器人進行翻轉。 另一種狀況是, 當3號螺旋槳的速度上升, 1號螺旋槳的速度下降時, 機器人就會往前傾斜。
而最後一種可能, 當對角線的兩組螺旋槳 轉得比另外一組快時, 機器人就會在垂直方向偏移。 有一個內置處理器 一直在監控著該進行什麼動作, 並且將這些動作進行組合, 然後以每秒600次的速度 決定出該對這些螺旋槳下達什麼指令。 這就是它操作的基本概念。
這種設計的其中一項優點是, 當你將它的尺寸縮小時, 機器人自然就會變得很靈巧。 這邊的 R 代表著機器人特性的長度。 事實上是直徑的一半。 而當你將 R 縮減時, 許多物理係數就會跟著變動。 其中最重要的 就是慣性或稱為阻止變動的抵抗力。 結果, 控制了角運動的慣性, 大小約是 R 的 5 次方。 所以當 R 變小時, 慣性會急遽的下降。 結果,角加速度, 這裡用希臘字母的 α 表示, 變成了 1 / R 。 它和 R 成反比。 當尺寸越小時,它就越容易旋轉。
Samsung also join into robot cleaner market |
用這個影片說明會清楚一點。 在右下角,你可以看見一個機器人 正在進行 360 度翻轉 在不到 1/2 秒的時間內。 多次的翻轉,只要稍微長一點點的時間。 在這種狀況下,內置的處理器 接收了加速器 以及陀螺儀回傳的資訊, 然後進行計算,如先前所說, 用每秒600次的速度發出指令, 讓機器人保持平衡。 在左下角,Daniel 正將機器人拋向空中。 這會讓你知道它的操控能力有多強大。 不論你怎麼丟, 機器人都能恢復平衡然後回到他的手中。
為什麼要將機器人設計成這樣呢? 嗯,這種機器人有很多種運用方式。 你可以將它派遣到這種建築物裡, 擔任先遣部隊去找出侵入者, 或是去找尋生化物質洩漏, 或是瓦斯洩漏等。 你也可以將它們運用在 例如建築上面。 這裡的機器人正運送著橫梁、柱子, 並且組合成立方體形狀的建築物。 我再告訴大家詳細一點。 這些機器人可以用來運送貨櫃。 但這些小機器人的困難在於 它們對於重物的負載能力有限。 所以如果你可能會希望能有多一點機器人 一起來搬運這個重物。 這是我們近期實驗的照片 -- 事實上已經不算是近期了 -- 在地震過後的仙台市(日本)。 這種機器人可以被派遣進入傾倒的建築物裡面 去評估天災造成的損害, 或是派遣到反應爐裡 去勘查輻射等級。
如果這些機器人想有自主能力的話, 它們必須先解決這個問題, 就是必須能夠判斷 怎麼從 A 點到達 B 點。 這有一點難度, 因為這個機器人的動力學是相當複雜的。 事實上,它們活在 12 維空間裡。 所以我們運用了一些技巧。 我們將這個 12 維空間的曲線 轉換成為 一個平面的四維空間。 在這個四維空間之中, 包含了 X, Y, Z 還有偏移的角度。
所以這個機器人所做的是, 去找出我們所說的最小震盪軌跡。 複習一下物理參數, 我們有位置,接著衍生出速度, 以及加速度, 還有加加速度, 然後是震盪。 所以機器人將震盪進行最小化。 這實際上的結果就是 產生出柔順且優美的動作。 它還可以用來避開障礙物。 而這些最小震盪軌跡在這個平面空間中 又會被轉換回 這個複雜的 12 維空間, 才能夠讓機器人去進行 控制以及執行任務。
讓我給大家看一些例子 說明這些最小震盪軌跡是什麼樣子。 在第一段影片中, 你可以看見機器人經過中繼點 由 A 點到達 B 點。 所以機器人確實可以 去執行任何曲線軌跡。 這些是環狀軌跡, 機器人牽引著大約 2 G 的重力。 在上面有個置頂動態影像攝影機, 它會以每秒100次的速度告訴機器人自己在哪裡。 它也會告訴機器人這些障礙物的位置。 這些也可以是移動中的障礙物。 你將會看見 Daniel 將這個鐵環丟向空中, 機器人會計算鐵環的位置, 然後試著去找出穿過鐵環的最佳方式。 身為一個學術人員, 我們總是被訓練得能夠赴湯蹈火才能籌措研究經費, 所以我們也要我們的機器人做到。
Panasonic dish washing robot system |
這機器人還能做另一件事, 就是去記住軌跡的片段, 不論是它自行發現的或是事先輸入的。 所以你可以看見機器人會去 組合一項動作 讓它產生動量, 接著改變自己的行進方向在回復過來。 它必須這麼做,因為這個窗戶的缺口大小 只比機器人的寬度稍微大一點。 就像是跳水選手站在跳板上, 接著會跳起來用以產生動量, 然後快速旋轉,翻轉兩周半進行穿越, 最後優雅的回復, 這就是機器人所做的事。 它懂得如何去結合這些零碎的軌跡 以達成這些相當困難的任務。
我想換個話題。 這些小機器人的缺點之一就是尺寸。 如同先前所提, 我們想使用大量的機器人 來解決尺寸上的限制。 但有個困難點是 你要如何去協調這些機器人呢? 這部份我們觀察了自然界。 我想讓大家看一段影片, 關於沙漠盤腹蟻 在 Stephen Pratt 教授的實驗室裡搬運東西。 事實上這是一小塊無花果。 事實上你可以把任何東西沾附一層無花果汁 螞蟻們就會將它搬回巢穴裡。 這些螞蟻並沒有中樞協調者。 它們能感覺到旁邊的鄰居們。 不用進行明確的溝通。 但因為它們能感覺到鄰居, 因為它們能感覺到東西, 它們在團體間有著隱性協調能力。
這種協調能力 就是我們希望機器人能有的。 當我們的一個機器人 被周圍的機器人包圍時 -- 看看機器人 I 和機器人 J -- 我們希望機器人做的事情是 當它們以特定隊形飛行時 去偵測它們之間的距離。 你期望能夠確保 這個距離是在可接受的範圍內。 於是機器人們偵測著這個誤差值 然後以每秒100次的速度 去估算控制指令, 接著以每秒600次的速度對螺旋槳進行動作指令。 這必須是在 沒有中央控制的方式下進行。 當你有許許多多機器人的時候, 想要以中央協調訊息的方式 快速的讓所有機器人完成任務是不可能的。 再加上機器人們必須依靠 它們自身去偵測到鄰近機器人 以獲得訊息來進行動作。 最後, 我們堅持機器人必須無法預知 鄰近機器人會是誰。 也就是匿名的方式。
接下來我將要給大家看 一段影片 關於20個這些小機器人 以特定隊形進行飛行。 它們正在偵測鄰近機器人的位置。 它們正在保持著這個隊形。 這些隊形可以改變。 可以是平面的隊形, 也可以是三維空間的隊形。 如你所見的, 它們從三維空間的隊形變換成平面的隊形。 在穿越障礙物時, 它們可以在飛行中調整隊形。 這些機器人移動時真的靠得很近。 在這個 8 字飛行隊形中, 它們的距離只有幾吋而已。 儘管在這些螺旋槳葉片之間 有著空氣動力的交互影響, 它們仍然能維持穩定的飛行。
一旦你知道要怎麼進行特定飛行隊形, 你就能準確的協力拿起物體。 而這是要告訴大家 藉由將機器人組合成小組後, 我們可以將機器人們的力量 放大兩倍、三倍、四倍,就像是你將看到的這樣。 但這樣做有一個缺點, 當你將尺寸放大以後 -- 如果你有很多這些機器人載運同一個東西, 你一定會有效地增加慣性, 於是你將會付出代價,它們會失去靈巧性。 但你可以相對獲得載運負重能力。
另一項我想給大家看的運用 -- 這也是在我們的實驗室裡進行的。 這是由 Quentin Lindsey 完成的,他是一位研究生。 他的演算法告訴這些機器人們 如何能夠自主性的 將綑狀的材料 建造成立體建築。 他的演算法告訴機器人 該拿起哪一個部份, 以及什麼時候該把它放在哪裡。 你可以在這短片中看到 -- 這是以 10 倍、14 倍速播放 -- 你可以看見這些機器人們建造了三種不同建築。 再次提醒,一切都是自主性進行的, 而 Quentin 所做的是 給這些機器人一張藍圖 記載著他想要的建築設計。
你所看見的這些實驗, 這些展示, 都使用了動作擷取系統。 如果離開了實驗室, 走進真實世界會變成怎麼樣呢? 如果沒有 GPS 會怎樣呢? 這個機器人 裝置了一具攝影機, 一具雷射H搜尋器,雷射掃描器。 它使用這些感應器 來製作一張周圍的地圖。 這地圖然有著一些環境特徵 -- 例如大門、窗戶、 人、家具 -- 接著它會辨識出相對於這些環境特徵 它所處的位置。 這裡並沒有整體座標系統。 座標系統是機器人自身定義出來的, 藉由它所在的位置以及它所看到的東西。 接著它對這些環境特徵進行探索。
我想給大家看一段影片, 關於 Frank Shen 以及 Nathan Michael 教授 所開發出來的演算法, 這個機器人第一次進入一個建築物, 然後在飛行中製作了這個地圖。 於是機器人知道環境特徵是什麼東西。 它製作出地圖。 它知道自己相對於環境特徵的位置, 然後每秒100次的速度 估算出自己的位置, 讓我們可以利用 剛剛說過的控制演算法。 事實上這個機器人正被 Frank 以遠端遙控的方式下指令。 但這個機器人也能自行判斷 它應該往哪裡走。 假設我把它送進一個建築物, 而我完全不知道這個建築物的樣子, 我可以命令機器人進入, 製作出一張地圖, 然後回來告訴我建築物的樣子。 所以機器人並不只是解決 如何從地圖上的A點到B點這個問題, 它甚至知道 每一次的最佳B點是哪個位置。 於是它知道該往哪裡去 以找出還沒有訊息的位置。 這就是它如何把地圖裝滿的方法。
最後, 我想再給大家看一樣應用。 這個技術有許多運用方式。 我是一個教授,我們對教育充滿熱情。 這種機器人可以改變 我們進行12年國教的方式。 我們身在南加州, 很靠近洛杉磯, 所以我想用關於娛樂的例子 來作為最後的結尾。 我想用一段音樂影片來作為結尾。 我要為大家介紹 這個影片的作者,Alex 和 Daniel。
在我播放影片之前, 我想告訴大家他們在接到 Chris 電話後的三天內 就將這段影片製作完了。 影片中演奏的機器人 都是完全自主性的進行。 你可以看見 9 個機器人們演奏著 6 種不同的樂器。 當然,這是為了 TED 2012 特別製作的。 讓我們一起來欣賞。
参考: GRASP Lab
註:2013 ~ 2025 機器人將是人類成長最快的一產業,Samsung、Panasonic 許多相續『應用機器人』產品,值得了解機器人的技術與應用。