顯示具有 TSMC 標籤的文章。 顯示所有文章
顯示具有 TSMC 標籤的文章。 顯示所有文章

2016年10月25日 星期二

台積電與 Intel 競爭白熱化開始,也形成ARM 與 Intel 競爭白熱化 (From TSMC Competition With INTEL In Technology And Business To ARM Competition With INTEL)

Intel危險?蘋果A10太強、對手無法比、媲美電腦CPU

蘋果iPhone 7採用台積電(2330)代工的「A10 Fusion」處理器,備受尊崇的晶片研究機構Linley Group分析這款晶片,直呼A10太強大,把對手打到落花流水,表現甚至優於部分電腦CPU。

巴倫(Barronˋs)21日報導,Linley Group主管Linley Gwennap報告指出,蘋果砸錢研發客製化CPU成果豐碩,iPhone 7性能優於其他旗艦機,甚至超越部分低階電腦。iPhone 7搭載A10 Fusion處理器,為蘋果首款採取big.LITTLE大小核的四核心晶片,內含兩顆高效能核心「Hurricane」,表現比前代高出35%;另兩顆核心「Zephyr」則更為省電。Hurricane和Zephyr都是蘋果的客製化核心。

Gwennap指出,Hurricane徹底擊垮對手。他引用Geekbench評比,A10處理器的單核跑分,遠勝三星電子Exynos 8890、高通驍龍820、華為麒麟955。儘管三星和華為在多核跑分表現出色,Gwennap說,多餘核心對應用程式沒有幫助,一般只需一或兩顆核心就能運作。

A10表現驚人是因為蘋果本錢雄厚,晶片比別家更大。處理器的晶粒(die)區域要價高昂,Hurricane卻大量使用,Hurricane面積為4.18平方公厘,尺寸約為其他廠商高階處理器的兩倍。蘋果不賣晶片賣手機,在晶粒多花個幾美元不打緊,只要能提高整體表現,讓產品更熱賣即可。
Gwennap稱,蘋果新CPU表現甚至優於英特爾(Intel)的x86核心,A10表現和英特爾Skylake的Core核心幾乎不相上下,差別在於英特爾Core核心用於電腦,不像A10一樣,有電池續航力的限制。這對英特爾是一大警訊,他說,蘋果CPU追上英特爾,實際上,Hurricane能輕鬆支援MacBook Air筆電等。當前蘋果筆電使用的英特爾晶片,速度比A10更慢。

目前蘋果iPhone、iPad使用自家處理器,但是筆電MacBook和個人電腦Mac仍然搭載英特爾CPU,外界老早盛傳,未來英特爾晶片可能會從蘋果產品全面淘汰,遭蘋果晶片取而代之

知名跑分軟體安兔兔(AnTuTu)1日發表9月前十大手機性能榜單,在9月1-30日期間蒐集超過2,000條單一機型數據後發現,iPhone 7 Plus的平均跑分成績高達172,644分、奪下冠軍,而iPhone 7的跑分也有170,124分,分數居次,把Android旗艦機遠遠拋在腦後。
蘋果(Apple)次代iPad Pro系列傳出將在明年春天出貨、且將搭載由台積電(2330)供應的A10X晶片,而最新傳出A10X晶片性能強大,單核跑分比前代A9X高出4成、且也比iPhone 7使用的A10晶片高出2成

日本網站taisy0、iPhone Mania 5日轉述荷蘭媒體TechTastic的報導指出,根據從可靠的消息人士取得的資料顯示,蘋果預計搭載在次代iPad Pro系列的「A10X」晶片GeekBench單核跑分達4,236、多核跑分達6,588。

The iPhone 7’s A10 Fusion Chip Is Faster Than The MacBook Air 

The majority of the iPhone 7’s improvements are under the hood, thanks to its new A10 Fusion chipset which makes it a quad-core phone versus the iPhone 6s which was still a dual-core setup. As we have seen on the AnTuTu benchmarks, this has unsurprisingly resulted in very high scores which has blown past the competition.

However it seems that’s not all. As noted by John Gruber (via MacRumors), the iPhone 7’s performance on Geekbench has revealed some very impressive single and multi-core scores which not only has outdone competing phones, but even Apple’s own products like the MacBook Air laptops.

Now there’s this perception that maybe because it is smaller and because it can’t do certain things that smartphones aren’t as powerful as laptops, and to a certain degree that is true for some models. However according to Gruber, he notes that the iPhone 7 has pretty much outdone every single MacBook Air Apple has ever released in both single and multi-core performance, save for the 2015 MacBook Air with an Intel Core i7 which only narrowly edges it out.

A follow-up tweet by Matt Mariska also revealed that the iPhone 7 managed to beat the $6,500 model of the 2013 MacBook Pro in single-thread performance. While obviously the iPhone won’t be replacing laptops anytime soon, it does go to show how far along Apple has come in the development of its A-series of ARM chipsets. Who knows, at this rate those rumors of an ARM-based Mac could come true, and it could be very well justified.

( Note: Mac Air CPU is 1.6GHz dual-core Intel Core i5 [Turbo Boost up to 2.7GHz] with 3MB shared L3 cache with 4GB onboard memory, but iPhone 7 is only 4 core ARM cotex A10 core with much less power consumption than Intel Core i5 )

A closer look at the ARM Cortex-A72

The Cortex-A72 was announced back in February, promising another boost to performance and substantial energy savings to boot. At ARM’s TechDay 2015 in London this week, we were fortunate enough to be given some deeper insight into the inner workings of ARM’s latest application processor.

Although the base-line architecture is very similar to the Cortex-A57, the A72 is much more than typical revision. A team of some 65 to 70 engineers have gone back through the design, optimizing almost every logical block for power efficiency, helping the processor to sustain maximum frequencies during heavy workloads, and focused on squeezing the design into a smaller area, to keep costs down.

Architecturally, the Cortex-A72 features a new branch-predictor, increases the effective decode and dispatch bandwidths, and has had changes made to the execution units, to name just a few alterations. ARMs new branch predictor reduces misprediction with a new algorithm and can suppress superfluous branch predictor accesses, which helps to reduce wasted energy. The rebuild offers up to 20 percent improvements to prediction over the A57.

The design still features a 3-wide decode, but the dispatch unit has gone from 3- to 5-wide, to more effectively break operations down into further micro-ops which help keep the 8-wide issue machine well fed. The execution stage sees the introduction of next-gen floating-point SIMD units with a
variety of latency reductions, multiple zero-cycle forwarding datapaths to reduce wasted cycles, and substantial bandwidth increases in the two integer units. The load and store units have a more sophisticated combined L1/L2 data prefetcher, offering a bandwidth improvement of 30 percent. All of which, among other changes, is designed to help reduce power consumption and to improve performance in certain areas over the A57.

In terms of what this means for silicon designers and end users, the Cortex-A72 is still a high-end processor, but it will utilize energy more efficiently.  In other words, the CPU will be able to do more within the limited power budgets available on mobile and should result in cooler devices as well. Even at 28nm, the Cortex-A72 boasts up to a 50 percent energy reduction when compared with the Cortex-A15 and a 20 percent saving compared with the A57, at the same clock speeds. Milliwatts per core have dropped from the A57, to around 700mW at 2.5GHz. The design takes up 10 percent less area than the A57, which will also help save on costs.

ARM is also increasingly focused on its POP IP, you’ll see quite a few references to TMSC’s 16nm FinFET Plus manufacturing node in the examples. As well as substantial energy savings, ARM reckons that the A72 will be able to sustain 2.5GHz clocks on the new 16nm process, whilst keeping within the limited smartphone power budget. It’s the additional power efficiency and resulting lower heat profile that will really help the A72 achieve higher clock speeds than a 16nm A57.

趨勢分析

2010年1月12日 星期二

2009 ~ 2010 臺灣上市公司受景氣恢復程度分析

Taken at the 2009 Consumer electronics show, L...Image via Wikipedia

展望2010 年,臺灣整體產業仍以電子業與金融業復甦最快,最大競爭對手韓國挾著面板與DRAM兩大致命武器加上Netbook、Smartphone 與手機品牌力量,成為台灣非常大之威脅,對台灣產生驚人殺傷力,韓國可以威脅臺灣上市公司將近7.5兆營收、五百萬人生計;間接影響臺灣政府1.2兆稅收。臺灣電子業在全球經濟景氣復甦朝向 smartphone、Netbook、eBook、e-Touch Netbook、smartbook成長,終端機價格下降數量增加許多,半導體製程技術成長至32nm後,製程技術將趨緩意味產能加速趨緩,全球半導體貿易統計組織預估半導體產業已觸底翻揚,然而全球半導體代工合併下,雖然2010 ~ 2011 成長力道將非常強悍,但是 TSMC、UMC 也將面對新合併之半導體代工競爭, 金融業將隨兩岸關係改善、兩岸金融商品合作與ECFA 人民幣業務效應,將大幅增加穫利率,因此要非常注意金融業動向。

值得注意 2009年 Samsung 還以 Netbook 一戰成名,在全球PC市場排名上升至第8,擠下SONY及Fujitsu。Samsung 的 Netboo k特色在於具有大尺寸鍵盤及長效電池,且與電信業者合作搭配門號銷售,不僅在歐洲市場大受青睞,此成功模式還複製到北美及亞洲市場,形成臺灣之新威脅。

整體產業復甦最慢是鋼鐵、油電、航運、電纜、化工,由 BDI 指數與全球增加之航運量看,航運業仍然不樂觀,如果考慮煤屬於汙染性能源全球使用煤能源比率下降,航運量將持續衰退,鋼鐵衰退之大應該要中鋼仔細研究臺灣鋼鐵業在全球之利基在那裡,鋼鐵依賴 ECFA 與 FTA 程度很高,金融風暴後似乎產業生態變了,加上韓國與大陸鋼鐵業競爭,真不知道該如何因應? 相對將影響到鋼鐵工廠地之營建業房價。

分析與感慨:

  • 至於政府大力鼓吹之觀光業,成長力道強度不足,觀光業整體營收排名最後,政府努力仍然不夠,馬總統與政府要加油,也請馬總統不要天天剪彩、出國訪問,而是多招開會議。政治上,臺灣由於選舉大都來至地方,兩黨政治人物利益大都來至地方,各行各業立委遠低於5%,因此這種政治結構下,除了國防、外交、教育經費、其它最大花費就是交通建設,這可以由近10年政府經費花費比率得知,最明顯是近期高鐵3820億元聯貸案創紀錄,而 DRAM 技術提升案89億遭否決,兩黨政治人物是何等不重視臺灣利益,DRAM 技術影響臺灣上市公司5.5兆營收,雖然 DRAM 產業繳稅不多,但是它間接影響0.9兆稅收,相形之下整體運輸業營收低於整體營收2.5%,整體運輸業稅收更低 2.0%,政府最大花費卻是交通建設,因為這些是兩黨政治人物利益所在。
  • 臺灣政府知不知道韓國三星 Samsung 正利用 DRAM、NAND flash、手機與家電大量賺的錢用來攻擊臺灣 Netbook、NB 產業,如果輸給韓國,臺灣電子業如同亡國,金融更因為電子業亡國而縮小。



參考:




Reblog this post [with Zemanta]